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Zonal mean state of the 
atmosphere 
 
Any observer of the atmosphere must be struck by the fact that it is always in motion 
John Dutton (1986), The Ceaseless Wind. Dover edition, p. 8. 
 
Getting a feel for the character of the solution in different circumstances. 
Analysis of real physical problems is usually quite complicated, and any particular physical situation may be 
too complicated to analyze directly by solving the differential equation. But one can still get a very good idea 
of the behavior of a system if one has some feel for the character of the solution in different circumstances. 
Richard Feynman, 1963: The Feynman Lectures on Physics. Addison-Wesley Publishing Company. Section 
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7.1 Introduction: the polar vortex 
 
The best theoretical framework for the desciption of the dynamical structure of the 
atmosphere is one which divides this dynamical structure into the following three 
interacting components: (1) a “primary”, zonally symmetric, zonal circulation, (2) a 
“secondary”, zonally symmetric, meridional circulation (the Hadley- and Ferrel cells), 
and (3) eddies and waves, which are zonally asymmetric. This chapter describes the 
observed “primary”, zonally symmetric, zonal circulation, including the zonal mean jets. 
The primary circulation, outside the deep tropics, i.e. the polar vortex, is always very close 
to a steady state of thermal wind balance, despite the continuous presence of eddies, which 
bring it out of balance by poleward transport of mass (heat) and vorticity (momentum). The 
“secondary” circulation exists in order to maintain the primary circulation in thermal wind 
balance. 
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Box 7.1 Summary of some important definitions and equations 
 
This box provides an overview of “primitive” equations in isentropic coordinates, which are 
derived in section 1.23 of these lecture notes and used in this chapter. 

 Potential temperature, θ, is defined as 
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θ = T
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p
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where T is temperature, κ=R/cp, R is the specific gas constant for dry air, cp is the heat 
capacity at constant pressure, and pref=1000 hPa. The two horizontal components of the 
equation of motion in isentropic coordinates (i.e with θ as a vertical coordinate) are 
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Here, Fx and Fy are yet unidentified frictional forces and Ψ is the isentropic stream 
function (or Montgomery streamfunction), defined as 
 

€ 

Ψ = c pT + gz ,          (4) 
 
where and g  is the acceleration due to gravity. 
The vertical balance of forces is represented by the hydrostatic relation: 
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where the Exner function is defined as 
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Relative vorticity, ζθ, in isentropic coordinates is  
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Potential vorticity (PV) in isentropic coordinates is 
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Zθ ≡
ζθ + f
σ

= −g ζθ + f( ) ∂θ
∂p

 ,        (8) 

 
where σ is isentropic density, defined by 
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The equation mass conservation is isentropic coordinates is 
 

€ 

∂σ
∂t

+
∂σu
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
θ

+
∂σv
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
θ

+
∂
∂θ

σ
dθ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 .       (10) 

 
The potential vorticity equation (derived from eqs. 2, 3 and 10, neglecting the curvature 
terms in eqs. 2 and 3, is 
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If dθ/dt=0 (adiabatic conditions) and Fx=0 and Fy=0:  
 

€ 

dZθ
dt

= 0  .           (12) 

 
In other words, potential vorticity is materially conserved under adiabatic and frictionless 
conditions. 

 
 

 Figure 7.1 shows the zonal mean zonal wind, [u]1, the zonal mean potential vorticity, 

€ 

[Zθ ] , (eq. 8 in Box 7.1) and the zonal mean pressure, [p], as a function of latitude and 
potential temperature in January and July, according to the COSPAR International 
Reference Atmosphere (CIRA)2. Remember that surfaces of constant potential temperature 
(isentropic surfaces) are material surfaces in adiabatic conditions. Potential vorticity is also 
materially conserved in adiabatic and frictionless conditions. The most interesting isentropic 
surfaces are those corresponding to “Middleworld”, approximately between 310 K and 380 
K. These surfaces intersect the dynamical tropopause, which is defined as the the ±2 
Potential Vortcity Unit (PVU)3 contour. In the Middleworld the dynamical tropopause 
separates stratospheric air in the middle latitudes form tropospheric air in the tropics.  

                                                
1 Square brackets indicate a zonal mean, i.e a mean long a circle of constant latitude.  
2 Fleming, E. L., Chandra, S., Barnett, J. J. and Corney, M., 1990: Zonal Mean Temperature, Pressure, Zonal 
Wind, and Geopotential Height as Functions of Latitude. Advances in Space Research, 10, No. 12, 11-59. 
3 1 PVU = 10-6 K m2kg-1s-1 
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FIGURE 7.1. The zonal average, monthly average of zonal wind, [u] (red contours, labeled in m s-1), 
of potential vorticity [Zθ] (eq. 8, Box 7.1) (green contours, labeled in PVU; interval is 50 PVU [1 
PVU=1 K m2kg-1s-1] for absolute values greater than 50) and pressure, [p] (black dashed contours, 
labeled in hPa) as a function of potential temperature and latitude according to the COSPAR 
International Reference Atmosphere (CIRA) for January and July. The monthly average overhead 
position of the sun is indicated in red below each figure.  
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FIGURE 7.2. Hovmöller diagram showing the zonal mean zonal wind velocity, [u], at θ=600 K (left 
panel) and at θ=350 K (right panel) as a function of latitude and month for the year 2018. The 
analysis is based on monthly mean of daily mean ERA-Interim values of [u] (https://apps.ecmwf.int). 
Contour interval is 5 m s-1. Labels in units of m s-1. The black contour corresponds to 0 m/s. 
 
 The zonal mean zonal wind exhibits a seasonal cycle (figures 7.1 and 7.2), which is 
especially strong in the stratosphere. In winter two eastward jets can be distinguished: a 
subtropical jet at about 30° latitude and 350 K and a stratospheric polar night jet at about 
60° latitude and above 500 K in the Northern Hemisphere and above 400 K in the Southern 
Hemisphere. In summer the subtropical jet weakens and shifts polewards while the 
stratosphere jet reverses direction, becoming westward and very weak. In other words, in 
summer an anticyclonic circumpolar vortex is observed in the stratosphere, while a 
cyclonic circumpolar vortex remains in the troposphere and lower stratosphere. The wind-
reversal in spring and autumn in the stratosphere (e.g. at 600 K) is due to the interplay of 
“planetary wave drag” and radiative heating and cooling. This complex nonlinear interaction 
will be explored in chapter 12.  
 Figure 7.3 shows maps of potential vorticity, 

€ 

Zθ  (PV), defined in eq. 8 of Box 7.1, and 
of the x-component of the wind velocity, u, in the layers θ=330-370 K (left) and θ=600-700 
K (right) in the Northern Hemisphere on January 8, 2009. The first layer is located at 
tropopause level (about 10 km above sea level). The second layer is located at about 20 hPa 
(25 km above sea level). In both layers we observe high PV-values in a reasonably circular 
area centred over the pole. The outer boundary of this area is characterised by a strong 
meridional PV-gradient in both layers. In the lower layer (at 330-370 K)  this PV-gradient is 
observed approximately at 20-30°N. This corresponds to the poleward edge of the tropical 
Hadley circulation. In the upper layer (at 600-700 K) this PV-gradient is observed 
approximately at 60-65°N. This corresponds approximately to the edge of the Polar night. In 
the Polar night the atmosphere cools by emission of radiation. There is no compensating 
diabatic heating by Solar radiation.  
 In the winter hemisphere, cooling by radiation in the extra-tropics is manifest principally 
as a net divergence of the downwelling cross-isentropic mass flux. Mass crosses isentropes 
and is ultimately stored in the “Underworld” (the layer below 300 K). In this way a negative 
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isentropic density anomaly develops above 300 K especially over the Polar Cap. This 
negative isentropic density anomaly is observed in the upper panels of figure 7.4. Since 
potential vorticity is inversely proportional to isentropic density, the negative isentropic 
density anomalies are manifest as positive potential vortcity anomalies (figure 7.3). In this 
chapter it is shown that thermal wind balance dictates that a negative isentropic density 
anomaly should be accompanied by a positive vorticity anomaly (see also section 1.33). 
This is verified in the lower panels of figure 7.4. 
 In this chapter a deep understanding of the thermal and dynamical structure of the 
zonally symmetric component of the circumpolar flow is developed from one single 
equation, i.e. the thermal wind balance equation, which can be expressed in terms of 
potential vorticity. Solutions of this so-called potential vorticity (PV)-inversion equation 
reveal how large-scale patterns of wind, temperature and pressure are interconnected and 
related to the potential vorticity distribution.  

 
FIGURE 7.3. Potential vorticity distribution (red and blue contours and shading) and zonal (x-) 
component of the wind velocity (black contours and hatching) in the layer between the isentropic 
surfaces at 330 K and at 370 K (left) and in the layer between the isentropic surfaces at 600 K and at 
700 K on January 8, 2009, 12 UTC over the Northern Hemisphere.  Left panel: PV-contour interval 
is 1 PVU, starting at 1 PVU (blue). First red PV-contour at 5 PVU.  Right panel: PV-contour interval 
is 40 PVU, starting at 40 PVU (blue). First red PV-contour at 120 PVU.  Both panels: contour-
interval wind velocity (black) is  10 m s-1; first contour at 20 m s-1; hatching if u>30 m s-1.  Based on 
the ERA-Interim reanalysis (https://apps.ecmwf.int). 
 
7.2 Potential vorticity inversion equation 
 
Potential vorticity inversion is based on the assumption that the atmosphere is both in 
gradient wind balance and in hydrostatic balance. This assumption is applied here to the 
“primary” circulation, i.e. to the simplified situation of a circumpolar zonal (west-east) flow 
that is axisymmetric about the pole.  In other, words, we can restrict out attention to zonal 
mean quantities, which are indicated here by square brackets, i.e. [u] is the zonal mean 
of u. 
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FIGURE 7.4.   Upper panels: Isentropic density, σ (eq. 9, Box 7.1) in the layer 330-370 K (left) and 
in the layer 600-700 K (right) on January 8, 2009, 12 UTC. Lower panels: absolute vorticity, 
(

€ 

ζθ + f ) in the layer 330-370 K (left) and in the layer 600-700 K (right) on January 8, 2009, 12 
UTC. Left-upper panel: σ -contour interval is 5 kg m-2 K-1, starting at 5 kg m-2 K-1. Blue: σ<30 kg m-2 

K-1. Red: σ>30 kg m-2 K-1. Right-upper panel: σ -contour interval is 0.1 kg m-2 K-1, starting at 0.1 kg 
m-2 K-1. Blue: σ<1 kg m-2 K-1. Red: σ>1 kg m-2 K-1. Lower panels: contour interval is 2×10-5 s-1 if 
(

€ 

ζθ + f )>10-4 s-1. Red shading: (

€ 

ζθ + f )>10-4 s-1. Blue shading: 0.5×10-4 s-1<(

€ 

ζθ + f )<10-4 s-1. Based 
on the ERA-Interim reanalysis (https://apps.ecmwf.int).  
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 With potential temperature, θ, as a vertical coordinate, the balance between the zonal 
mean pressure gradient, the zonal mean Coriolis force and the zonal mean centrifugal force 
is (compare with eq. 3 of Box 7.1). 
 

€ 

u[ ]2 tanφ
a

= −
∂ Ψ[ ]
∂y

− f u[ ]  .        (7.1) 

 
The derivative of the streamfunction with respect to y is performed with θ constant. 
Hydrostatic balance in the isentropic coordinate system is written as follows (eq. 5 of Box 
7.1): 
 

€ 

∂ Ψ[ ]
∂θ

= Π[ ]  .          (7. 2) 

 
 Dropping the subscript, θ, in eq. 8 (Box 7.1), we write the definition of zonal mean 
potential vorticity as  
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The zonal mean of relative vorticity is 
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u[ ] tanφ
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 ,         (7.4) 

 
and the zonal mean of isentropic density is 
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Differentiating (7.3) with respect to y and using (7.5) yields (assuming g constant) 
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From gradient wind balance (7.1) and hydrotatic balance (7.2) the following equation for 
thermal wind balance is obtained: 
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floc
∂ u[ ]
∂θ

= −
∂ Π[ ]
∂y

 .         (7.7) 

 
In (7.7) 
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floc = f +
2 u[ ] tanφ

a
 .         (7.8) 

 



 

 

9 

Using the definition of the Exner function (eq. 6, Box 7.1), 
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 ,          (7.9) 

 
and the ideal gas law (p=RρT, ρ being density), the right hand side of (7.7) can be rewritten 
as follows: 
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so that eq. 7.7 becomes 
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Using (7.4) and (7.11), (7.6) becomes  
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This equation, which is in fact a formulation of thermal wind balance in terms of 
potential vorticity, is also a version of the equation expressing the principle of 
invertibility of potential vorticity4. It describes the balanced response, in terms of the zonal 
average zonal flow, [u], to a specified zonally symmetric distribution of the potential 
vorticity [Z]. If floc[Z]>0, eq. 7.12 is an elliptic non-linear partial differential equation 
(Box 7.2). Finding the solution, [u(y,θ)], given [Z(y,θ)], is complicated by the nonlinearity of 
the equation and by the inhomogeneous lower boundary condition. The following sections 
describe in detail how the solution of (7.12) is obtained, including the complications 
resulting from imposing the boundary conditions. 
  Equation 7.12 seems to be a rather complicated way of formulating thermal wind 
balance. The potential vorticity is not a variable that is directly measured, although it can be 
deduced from measurements of temperature, pressure and wind velocity. So, why do we 
want to have an equation for the wind velocity in terms potential vorticity? What makes 
equation 7.12 so attractive, despite its great complexity?  
  The answer to this question is the following. Because potential vorticity is conserved in 
adiabatic conditions, the full PV-evolution equation (eq. 11, Box 7.1), which is repeated 
here: 
 

€ 

dZθ
dt

= Zθ
∂
∂θ

dθ
dt

+
1
σ
∂u
∂θ

∂
∂y

dθ
dt

−
1
σ
∂v
∂θ

∂
∂x

dθ
dt

+
1
σ

∂Fy
∂x

−
∂Fx
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ,   (7.13) 

 
 

                                                
4 Equation 7.12 is analogous to eq. 29 of Hoskins et al. (1985) (list of articles at the end of this section) 
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FIGURE 7.5. The zonally averaged, monthly average pressure and relative vorticity (eq. 7.54) 
according to the CIRA (Table 1.1), as a function of latitude and potential temperature. Relative 
vorticity is labeled in units of 10-6 s-1 (red contours: postive values; blue contours: negative values). 
The dashed lines are isobars labeled in hPa. The black thick solid line marks the boundary of the 
narrow band on the winter side of the equator where flocZ<0, i.e. where the zonally averaged state is 
inertially unstable. Upper panel: January; lower panel: July. 
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is attractive as a single differential equation that governs the dynamical evolution of the 
atmosphere, because material potential vorticity changes can be attributed fully to diabatic 
effects. Furthermore, given potential vorticity, and assuming that the atmosphere remains 
very close to thermal wind balance, the PV-inversion equation relates potential vorticity to 
all the other thermodynamic variables (temperature, pressure and wind), because its solution 
yields the wind velocity and the associated pressure and temperature through the balance 
requirements. Therefore, the behaviour of the atmosphere can be understood from only two 
equations (eqs. 7.12 and 7.13), given knowledge of boundary conditions and diabatic effects. 
 If flocZ<0, eq. 7.12 is not elliptic and, therefore, does not have a unique solution. The 
criterion flocZ<0 corresponds to the criterion for inertial instability on an isentropic surface. 
A region of inertial instability is usually found within 10° of the equator on the winter 
hemisphere side of the equator (figure 7.5), epecially in the months December to February 
(in the northern hemisphere winter) and June to August (in the southern hemisphere winter). 
Inertial instability or weak inertial stability, presumably, is the reason for the relatively 
intense winter cross-equatorial Hadley cell (chapter 12). 
 
 
Box 7.2 Elliptic partial differential equations 
 
In fluid dynamics elliptic partial differential equations arise in problems where some form of 
equilibrium is imposed, such as thermal wind balance (eq. 7.7) in the case of eq. 7.12.  We’ll 
encounter more partial differential equations of the elliptic type, such as the “omega 
equation” in section 1.43 and the Kuo-Eliassen equation in section 11.5.  
 The prototype second-order partial differential equation with two independent variables 
is 
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This equation is of the elliptic type if 
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B2 − 4AC < 0  
 
Eq. 7.12, thus, is of the elliptic type if flocZθ>0. The function f can be written as 
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If eq. 1 is elliptic this equation possesses one and only one solution in a given region, 
bounded by a smooth curve with u=H(x,y) on this curve and provided that in this region 
(including the boundary) 
 
(i) A, B, and C are continuously differentiable, 
(ii) D, E, F, G and H are continuous, 
 
In the case of eq. 7.12, A=1, B=0, D=-(tan(φ)/a), F=-(acos(φ))-2 and G=df/dy−σ∂Z/∂y. So, A 
and B are continuously differentiable and D, F and G are continuous. However, because floc 
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depends on u, the functions C and E also depend on u, implying that eq. 7.12 is a non-linear 
version of the prototype elliptic partial differential equation (1). In particular, when we apply 
the chain rule to the second term on the l.h.s. of eq. 7.12, we encounter a term containing a 
factor (∂u/∂θ)2 which does not fit in with this prototype equation (see eq. 7.8).  
 In the vicinity of the equator eq. 7.12 is very likely not elliptic. In January, for example 
(figure 7.5),  flocZ<0 equatorward of 10°Ν. The southern boundary of the domain of solution 
of eq. 7.12 should therefore lie north of this latitude. Physically speaking, the condition, 
flocZ<0, is associated with the (inertial) instability of thermal wind balance (section 1.19).  
 The standard formulation of the boundary condition for the solutions of an elliptic second 
order partial differential equation is to specify u on the boundary (Dirichlet boundary 
condition) or to specify the normal derivative of u on the boundary (Neumann boundary 
condition). In the problem at hand, we impose a Dirichlet boundary condion at the pole, at 
the upper boundary and at 10°N. At the lower boundary, which is not a smooth curve, we 
impose a numerical approximation of the Neumann boundary condition by prescribing 
∂u/∂θ.  
 Therefore, because of the non-linearity of eq. 7.12 and because of the complexity of 
formulating a boundary condition, the solution of this equation is far from a standard 
mathematical problem. 
 

 
7.3 Reference state and the character of zonal mean PV-anomalies 
 
At first glance, the zonal mean potential vorticity distribution, shown in figure 7.1,  
demonstrates little relation with the zonal mean zonal wind distribution. In particular, it is 
almost impossible to identify the jets with particular features in the potential vorticity 
distribution. The PV-inversion equation (7.12), nevertheless, states that such a relation 
exists. It is the intention of this section to identify that part of the PV-distribution that is 
“inducing” the zonal mean zonal flow.  
  Zonal mean potential vorticity, zonal mean isentropic density and zonal mean relative 
vorticity can be partitioned into a reference state, indicated by the subscript ‘ref’, and an 
anomaly, indicated by a prime, as follows.  
 

€ 

Z[ ] = Zref + Z '  ;          (7.14a) 

€ 

σ[ ] =σ ref +σ ' ;          (7.14b) 

€ 

ζ[ ] = ζref +ζ ' .          (7.14c) 
 
The reference isentropic density is determined by horizontally averaging the isentropic 
density over the domain of interest. Since we are restricting our attention here to the case 
where σ is a function only of latitude, φ, and potential temperature, θ, this becomes  
 

€ 

σref =
σcosφdφ∫
cosφdφ∫

.         (7.15) 

 
Here, the integral in (7.15) is over the northern hemisphere from 10°N to the North Pole. As 
was stated before, the equatorial region is excluded because of the occurrence of inertial 
instability (figure 7.5), making thermal wind balance impossible. The reference potential 
vorticity, Zref, and σref are related by, 



 

 

13 

 
FIGURE 7.6. The average isentropic density (σref) between 10°N and the North Pole in January 
(blue solid line) and July (red solid line) as a function of potential temperature, and the zonal mean 
isentropic density at 60°N (January average: blue dashed line; July average: red dashed line) 
according to the Cospar International Reference Atmosphere (Table 1.1).  
 

€ 

Zref =
f

σref
.          (7.16) 

 
Because f depends on y and σref depends on θ, Zref depends on θ and y. If [σ]=σref and [Z]= 
Zref then [ζ]=ζref=0. From the circulation theorem (section 1.22) and with [u]=0 at the pole 
we conclude that the reference state corresponds to the state of rest. This is confirmed by 
observing that the right hand side of eq. 7.12 is equal to zero if Z=Zref, i.e. the “forcing term 
on the r.h.s. of eq. 7.12 is equal to zero if there is no PV-anomaly. In that case the solution 
of eq. 7.12, with [u]=0 at the boundaries of the domain of interest, is [u]=0 in the interior of 
the domain.  
 It is easily deduced that the relation between the PV-anomaly, 

€ 

Z ', and the associated 
separate vorticity- and isentropic density anomalies is given by 
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Z '
Zref

=
ζ '
f
− 1+

Z '
Zref

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
σ '
σ ref

,         (7.17a) 

 
or, in non-dimensional form: 
 

€ 

Z+ = ζ+ − 1+ Z+( )σ+ ,         (7.17b) 
 
where  
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€ 

Z+ ≡
Z '
Zref

; ζ+ ≡
ζ '
f

; σ + ≡
σ '
σ ref

 .       (7.18) 

 
Z+ is referred as the “normalized PV-anomaly”. According to (7.17a,b), a positive PV-
anomaly will probably give rise to both a positive vorticity (cyclonic) anomaly and a 
negative isentropic density anomaly. 
 If the PV-anomaly is relatively weak, i.e. if Z+<<1, we obtain the linear approximation of 
(7.17a,b): 
 

€ 

Z+ = ζ+ −σ+ .          (7.19) 
 
 The definition of the reference state isentropic density (i.e. σref) is somewhat arbitrary. 
Nevertheless, as long as σref depends only on potential temperature, the reference state is 
associated with the state of rest, while the anomaly is associated with, i.e. “induces”, the full 
flow field. In this context, it might be better to refer to the “positive and negative anomalies” 
of Z+ as “maxima and minima” of Z+. However, we will stick to the former terminology, 
because this terminology is commonly used. 
 Figure 7.6 shows the monthly average value of σref as well as of [σ] at 60°N as a 
function of potential temperature for January and for July. Clearly, isentropic density is a 
strong function of potential temperature. Furthermore, below 360 K we observe large 
negative deviations from the reference value, exceeding 50% of this reference value, i.e. 
σ+<−0.5. Above 360 K these deviations are no more than about 20% of the reference value.   

The reference state potential vorticity undergoes a seasonal cycle under influence of 
seasonal changes in the σref. This seasonal cycle, however, does not induce a seasonal cycle 
in the circumpolar flow.    
 The monthly average distributions of Zref, defined in (7.16), Z+, defined in (7.18), and 
pressure ([p]), as a function of latitude and potential temperature in the CIRA, are shown in 
figure 7.7 for January and July. An interesting feature that stands out clearly, is the strong 
positive PV-anomaly, with values of Z+ exceeding 2 non-dimensional units in both months 
at levels between 200 hPa and 400 hPa. This PV-anomaly, which is present year round in 
both hemispheres, appears to coincide approximately with the Zref=2 PVU isopleth, which is 
called “the reference dynamical tropopause”. Following the terminology of Gettelman et 
al. (2011)5, we refer to this PV-anomaly as the “extra-tropical UTLS PV-anomaly” 
(“UTLS” stands for “Upper Troposphere/Lower Stratosphere”), in short: “ex-UTLS PV-
anomaly”. Note that the isopleths of pressure (the black dotted lines in figure 7.7) in the 
layer between 320 and 380 K are squeezed together in the tropics, indicating that this layer 
contains more mass in the tropics than in the mid-latitudes. The ex-UTLS PV-anomaly, 
indeed, is manifest principally as a mass anomaly, or isentropic density anomaly. This is 
seen more clearly in figure 7.10, which will be discussed later.  
 In the winter hemisphere (January in the northern hemisphere and July in the southern 
hemisphere) we identify a positive PV-anomaly in the stratosphere above about 500 K. This  
PV-anomaly extends to much greater heights than is shown here. The stratospheric PV-
anomaly exhibits a strong seasonal cycle, giving way to a negative PV-anomaly in summer. 

                                                
5 Gettelman, A., P. Hoor, L.L.Pan, W.J. Randel, M.I. Hegglin, T. Birner: 2011: The extratropical upper 
troposphere and lower stratosphere. Rev.Geophys., 49, RG3003, doi:10.1029/2011RG000355. 
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FIGURE 7.7. The zonal average distributions of Zref (green contours; labeled in PVU), Z+ (red: 
positive; blue: negative; labeled in non-dimensional units) and pressure (dotted; labeled in hPa) as a 
function of latitude and potential temperature for January and July. Plus- and minus signs indicate 
maxima and minima in Z+, respectively. Contours within 10° of the equator are not drawn. The thick 
black line corresponds to the Earth’s surface. The contours of Z+ correspond to the values, ±0.1, 
±0.5,±1, ±2 and ±3 units. The line corresponding to Zref=2 PVU is the “reference dynamical 
tropopause”. The surf-zone is characterised by a reversed isentropic gradient of Z+. Analysis based 
on the COSPAR International Reference Atmosphere (Fleming et al., 1990).  
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FIGURE 7.8. The CIRA (Table 1.1) monthly mean, zonal mean normalized relative vorticity 
anomaly, ζ+ (defined in eq. 7.18) in January (upper panel) and in July (lower panel), labeled in non-
dimensional units. Also shown is the pressure field (dashed lines, labeled in hPa). The positive 
stratospheric polar cap PV-anomaly in the winter hemisphere is manifest more strongly as a vorticity 
anomaly than the Ex-UTLS PV-anomaly. 
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FIGURE 7.9. The CIRA (Table 1.1) monthly mean, zonal mean normalized isentropic density 
anomaly, σ+ (defined in eq. 7.18) in January (upper panel) and in July (lower panel), labeled in non-
dimensional units, where only negative anomalies are shown. Also shown is the pressure field 
(dashed lines, labeled in hPa). The positive ex-UTLS PV-anomaly is manifest very strongly as a 
negative mass anomaly. The stratospheric polar cap PV-anomaly in the winter hemisphere is 
manifest more strongly as a negative mass anomaly in the southern hemisphere than in the northern 
hemisphere. 
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FIGURE 7.10. Close-up view of the lower part of the previous figure, where positive anomalies are 
also shown, i.e. the monthly mean, zonal mean normalized isentropic density anomaly, σ+ in January 
(upper panel) and in July (lower panel), labeled in non-dimensional units. Also shown is the pressure 
field (dashed lines, labeled in hPa). The positive Ex-UTLS PV anomalies in both summer and winter 
hemispheres are formed due to the opposite effects on potential vorticity of diabatic upwelling 
(dθ/dt>0) between 290 K and 380 K in the tropics and diabatic downwelling (dθ/dt<0) in the extra-
tropics between the same levels (chapter 12). The formation-mechanisms of these anomalies are 
addressed in detail in chapter 12 (see also section 7.14). 
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  In the ex-UTLS PV-anomaly |Z+|>1, while higher up in the stratosphere |Z+| is usually 
much smaller than 1, the only exception being winter stratosphere above 550 K in the 
southern hemisphere where |Z+| exceeds a value of 2. This translates into an intense 
southerm hemisphere polar winter stratospheric jet.  
 The PV-distribution equatorward of 10° latitude is not shown because, as was stated 
before, the reference isentropic density is determined by averaging poleward of 10° latitude 
for each hemisphere separately, using eq. 7.15. For the monthly average distribution of 
potential vorticity in the two months shown in figure 7.7 (January and July), the criterion for 
inertial stability is fulfilled everywhere in both hemispheres, pole-ward of 10° latitude 
(figure 7.5). 
 Figure 7.8 shows ζ+ while figure 7.9 shows σ+ as a function of latitude and potential 
temperature in January and July. We observe that the ex-UTLS PV-anomaly is manifest 
strongly as an isentropic density- (or mass-) anomaly. Eq. 7.17b demonstrates that two 
factors contribute to the amplitude of the PV-anomaly. In the case of the ex-UTLS PV-
anomaly, the second term on the r.h.s. of eq. 7.17b is more than an order of magnitude larger 
than the first term. Therefore, the ex-UTLS PV-anomaly is almost completely determined by 
the isentropic density anomaly. Figure 7.10 gives a more detailed picture of the isentropic 
density anomaly in the UTLS. Isentropic density anomalies are negative in the extratropics 
and positive in the tropics. The stratospheric PV anomaly is about equally manifest as a 
relative vorticity anomaly and as a isentropic density anomaly.  
 The difference in the character of the two positive PV-anomalies is the result of two 
principal “diabatic mechanisms” that lead to a local change in potential vorticity. The first 
mechanism is the “diabatic stretching mechanism” (the first rem on the r.h.s. of eq. 7.13). 
The second “mechanism” is the result of “advection of PV” due to cross-isentropic flow. 
The “tilting terms” on the r.h.s. of eq. 7.13 are less important. Neglecting these terms and 
also neglecting the frictional terms, the PV-equation can be written as follows:  
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∂Zθ
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+ u ∂Zθ
∂x
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⎜ 
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⎠ 
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θ

= −
dθ
dt

∂Zθ
∂θ

+ Zθ
∂
∂θ

dθ
dt

.     (7.20) 

 
Due to the strong positive vertical PV-gradient in the stratosphere and the diabatic cooling 
over the winter pole in the stratosphere, the first term on the r.h.s., i.e. the diabatic advection 
term, dominates in the middle to upper polar winter stratosphere . The second term on the 
r.h.s., i.e. the “stretching term”, is most important in the tropical troposphere and lower 
stratosphere, due to strong vertical gradients in latent heating. More details on this question 
are given in chapter 12. 
 
 
7.4 Scale of the “response” to a PV-anomaly 
 
 In this section we solve a strongly simplified version of the PV-inversion eq. 7.12. From this 
solution we identify a fundamental spatial scale relation that governs adjustment to thermal 
wind balance. 
  We first assume that  
 

€ 

utanφ
a

<<
∂u
∂y

,  f loc ≈ fref = constant,  ρfrefθ = constant,  σ ref = constant . 
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Here, fref is the area weighted average of f over the northern hemisphere. We obtain a highly 
simplified (linearised) version of eq. 7.12: 
 

 

€ 

∂2 u[ ]
∂y2 + A ∂

2 u[ ]
∂θ 2 = −σ ref

∂Z '
∂y

,        (7.21) 

 
where 
 

€ 

A ≈
frefθZref ρ[ ]

g
≈ constant .        (7.22) 

 
By applying the method of "separation of varables", we assume that u(y,θ) and Z’(y,θ) 
depend on y and θ according to 
 

€ 

u[ ] = U θ( )sin
2π yNP − y( )

L
; Z '= Z θ( )cos

2π yNP − y( )
L

.      (7.23) 

 
The parameter, yNP, is the distance from the equator to the North Pole. The horizontal scale 
of both the “response” (the zonal wind, [u]) and the “forcing” (the potential vorticity 
anomaly, centred at the North Pole) is proportional to L. This is so, because the equation 
(7.21) governing the “response”, is linear. We take this solution seriously (physically) only 
for |yNP-y|<L/2. Substituting (7.23) into (7.21) yields, 
 

€ 

∂2U
∂θ2

−
4π 2

AL2
U = −

2πσ ref
AL

Z  .        (7.24) 

 
This is an inhomogeneous "Helmholtz equation".  
  We now assume that the potential vorticity anomaly is located at a certain (discrete) 
height or potential temperature, θ0. For θ≠θ0, the right hand side of eq. 7.24 is equal to zero. 
Therefore, here eq. 7.24 is a homogeneous differential equation with the following solution. 
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U = C1exp
2π θ −θ0( )
L A
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⎟  ,     (7.25) 

 
where C1 and C2 are constants determined by the boundary conditions. Assume, for 
simplicity, that the boundaries are located very far away from the potential vorticity anomaly 
and that U goes to zero at these boundaries. If A>0 (which is the case if Zref>0, which is 
practically always the case in the northern hemisphere), this implies that  
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U = Cexp −
2π θ −θ0
L A

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ,         (7.26) 

 
where C is a constant, which is determined by the "boundary condition" at θ=θ0. The 
solution, therefore, describes an exponentially decaying function of θ with a maximum or 
minimum value at the discrete level θ=θ0 where Z is non-zero (figure 7.11).  
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FIGURE 7.11. The amplitude of the azimuthal wind as a function of potential temperature, induced 
by a hypothetical PV-anomaly at a discrete level θ=θ0=500Κ. The parameter values that were used to 
draw this graph have the following values: L=500 km, A=5×10-8 K m-2 and C=10 m/s. The Rossby 
scale “height” is explained in the text.  
 
  If Α>0, ∂2U/∂θ2 has the same sign as U for θ≠θ0.  In order to make the solution for θ≠θ0 
match the solution for θ=θ0, U>0 if Z>0 and U<0 if Z<0. Therefore, in agreement with 
(7.17b), a positive potential vorticity anomaly is associated with a cyclonic circulation 
while a negative potential vorticity anomaly is associated with an anticyclonic 
circulation. 
  The idea, which is distilled from this semi-qualitative solution of the linearised PV-
inversion equation, is that a potential vorticity anomaly induces a wind field, [u](y, θ), with 
a vertical dependence given approximately by eq. 7.26 (figure 7.11). In other words, a 
change in the wind field can be attributed to a change in the potential vorticity field. Alan 
Thorpe6 coined the term attribution as a slightly weaker form of "cause-and-effect" to 
characterise the relation between potential vorticity and the induced wind field. Stated 
differently, changes of the potential vorticity (due to for example heating/cooling or 
advection; eq. 7.20) must be accompanied by changes in the wind, in order to preserve 
thermal wind balance.  
 The associated vertical scale, Δθ, of the response in [u] is easily distilled from eq. 7.26: 
 

€ 

Δθ =
L A
2π

 .          (7.27) 

                                                
6 Thorpe, A.J., 1997: Attribution and its application to mesoscale structure associated with tropopause folds. 
Q.J.R.Meteorol.Soc.,. 123, 2377-2399. 
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FIGURE 7.12. A PV-anomaly over the South Pole. Polar night stratospheric vortex at 10 hPa over 
Antarctica (September 20, 2002, 1200 UTC). Left: height (labeled in dm); middle: potential vorticity 
on the 850 K isentropic surface shading from 0 PVU to -1000 PVU (red); right: specific humidity on 
the 850 K isentropic surface shading from 2 to 3.8 (red) mg/kg. From Simons, A., M. Hortal, G. 
Kelly, A. McNally, A. Untach and S. Uppala, 2003: ERA-40 project report nr 5 (ECMWF). A 
whole issue of Journal of the Atmospheric Sciences is devoted the the splitting of the polar vortex 
over the South Pole in September 2002 (J.Atmos.Sci. number 3, vol. 62 (2005)), an event that had 
not been observed before. 
 
Δθ is referred to by Hoskins et al. (1985)7 as the "Rossby scale height" (shortly: "Rossby 
height"). It measures the vertical penetration (in K) of the flow structure above and below 
the location of the potential vorticity anomaly, which is induced by thermal wind adjustment 
to this anomaly. The concept of Rossby “height” is analogous to that of the deformation 
scale height for hydrostatic adjustment (chapter 3) or that of the Rossby radius of 
deformation for geostrophic adjustment (chapter 5). Stated shortly, we may say that a 
potential vorticity perturbation induces a perturbation in the wind field with a 
characteristic vertical scale in the order of the Rossby height. 
  Tranformation of the expression for Rossby “height” (7.27) to “physical space”, reveals 
deeper implications of the solution to the PV-inversion equation. Using hydrostatic balance, 
expressed as Δp= -ρgΔz, and the definition of isentropic density, expressed as σ=-Δp/(gΔθ), 
eq. 7.27 becomes 
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Δz
L

=
F
2πN

 ,          (7.28) 

 
where N is the buoyancy frequency, defined as (section 1.5), 
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N =
g
θ
Δθ
Δz

 .          (7.29) 

  
and 

                                                
7 Hoskins, B.J., M.E. McIntyre and A.W. Robertson, 1985: On the use and significance of isentropic potential 
vorticity maps. Quart.J.R.Met.Soc., 111, 877-946. (see p. 902) 
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€ 

F ≡ f f + ζθ( )  .         (7.30) 
 
is the inertial frequency (sections 1.18 and 1.20). 
  Equation (7.28) is written in terms of the aspect ratio, (L/Δz), of the circulation induced 
by a PV-anomaly. Average tropospheric conditions yield a Rossby ratio, N/F≈10-2/10-4=100 
8. Therefore, balanced circulation systems typically have an aspect ratio, L/Δz, of 100, 
i.e. they are very “flat”. An interesting exception is the core of an intense tropical cyclone, 
where the magnitude of the relative vorticity can be 100 times the planetary vorticity (i.e. 
ζa≈100f; problem 1.17; figure 7.13 9), so that F

€ 

≈10f, and therefore L/Δz≈10. Therefore, 
tropical cyclones have a relatively small horizontal dimension, which translates into a radius 
of maximum wind in the order of 100 km, or less in the case of a mature tropical cyclone. 
The horizontal dimension of a midlatitude cyclone, where relative vorticity usually does not 
significantly exceed planetary vorticity, is one order of magnitude larger (chapter 9).  
 

 
 
FIGURE 7.13. Vertical cross-sections of (azimuthally averaged) PV and isentropic density (contours 
labeled in kg m-2K-1) (left panel) and absolute vorticity and angular momentum, M (contours) (right 
panel) as a function radius (horizontal axis, which is linear in radius and runs from 0 to 200 km) and 
potential temperature (vertical axis), through the center of Hurricane Irma on 6 September 2017, 8 
UTC, from a simulation with the non-hydrostatic cloud-resolving limited area prediction model, 
HARMONIE (KNMI) with a grid size of 3.2 km. Courtesy of Sander Tijm and Jasper de Jong 
(2020).  
  
 
PROBLEM 7.1 In how far is the zonal mean zonal wind in balance and what causes 
departures from balance? 
Equation 7.1 has more than one equilibrium solution. In other words, the balanced zonal 
mean zonal wind, [u], can take on different values for the same meridional gradient of the 
Montgomery streamfunction. Investigate the relation between the meridional gradient of the 
Montgomery streamfunction and the zonal mean zonal wind in the Northern Hemisphere, in 
one month in winter and in one month in summer, using the ERA-Interim re-analysis on 
isentropic levels. Compare your results to the solution of eq. 7.1. Do this for the following 

                                                
8 The inverse of the Rossby ratio, i.e. the ratio, F/N, is sometimes referred to as “Prandtl’s ratio of scales”. 
9 In the core of the mature tropical cyclone, Gloria, values of potential vorticity exceeded 50 PVU (Shapiro, 
L.J., and J.L. Franklin, 1995: Potential vorticity in hurricane Gloria. Mon.Wea.Rev., 123, 1465-1475. 
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three isentropic surfaces, corresponding to θ=350 K, θ=475 K and θ=600 K. Departures of 
[u] from the balanced wind are caused by eddy meridional fluxes of potential vorticity 
substance (section 1.26), which give rise to meridional accelerations. Explore the relation 
between the zonal mean meridional wind, [v], and the zonal mean eddy meridional flux of 
potential vorticity substance, [v*ζ*].  Compare your results to the left panel of figure 7.19.  
 
PROBLEM 7.2. Does the stratosphere affect the circulation near the Earth’s surface? 
The potential vorticity anomaly at 850 K (approximately 10 hPa) over the Antarctic 
Continent, which is displayed in the middle panel of figure 7.12, has a very large diameter 
of about 4000 km. Will this anomaly have a significant dynamical effect on the wind at the 
Earth’s surface? Why?  
 

 
 
FIGURE 7.14. Model of a cyclone produced by a body of 6 times the normal potential vorticity. Left-
hand diagram: temperature distribution on the axis (Ta) and in the undisturbed atmosphere (Tu). 
Cross-section: thin lines are isentropes labeled in K; heavy lines in the left half indicate the relative 
depression (pu-p)/pu (per thousand) (pu is the pressure in the undisturbed atmosphere). Heavy lines 
on the right are isotachs, labeled in m/s. Figure taken from Eliassen, A. and E. Kleinschmidt, 1957: 
Dynamic Meteorology. In Encyclopedia of Physics, vol 48. Edited by S.Flügge and J. Bartels, p1-
154. 
 
7.5 Isentropic density distribution in relation to a PV-anomaly 
 
Ernst Kleinschmidt10 was the first to identify the important relation between potential 
vorticity and all other variables. His work on this subject was unfortunately largely ignored 
until more than 10 years after his death in 1970. Kleinschmidt presented a solution of the 
non-linear potential vorticity inversion equation (7.12) for the case of a cyclone “produced” 
by a “body of 6 times the normal potential vorticity” (i.e. Z+≈6). Kleinschmidt positioned 
this hypothetical “PV-anomaly” in the upper half of the troposphere. His solution is shown 

                                                
10 E. Kleinschmidt, 1950: Über Aufbau und enstehung von Zyklonen, I. Meteorol.Rundschau, 3, 1-6. 
Eliassen, A. and E. Kleinschmidt, 1957: Dynamic Meteorology. In Encyclopedia of Physics, vol 48. Edited 
by S.Flügge and J. Bartels, p1-154. 
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in figure 7.14. This figure demonstrates that a positive potential vorticity anomaly is 
associated with a cyclonic circulation which indeed penetrates vertically and horizontally 
into the environment of the anomaly, as indicated by the linear analysis in the previous 
section. The isentropes are attracted towards the centre of the PV- anomaly, implying 
that the static stability is increased within the anomaly and decreased above and below the 
anomaly. The latter fact can easily be deduced from eq. 7.17b, which, with Z+=0 (i.e. outside 
the anomaly) becomes 
 

€ 

ζ* =σ * .           (7.31) 
 
Therefore, a cyclonic circulation (with ζ+>0), which is induced remotely by a positive PV-
anomaly, leads to a remote positive isentropic density anomaly (with σ+>0), i.e. a reduction 
of the static stability above and below the PV-anomaly. 
  The iterative numerical solution of the PV-inversion equation (7.12) for a given 
distribution of potential vortcity, Z, consists of two embedded loops. First a solution, u1(y,θ), 
is found iteratively (Box 7.3) for a fixed (reference) value of floc=f(y) and with σ=σref(y,θ) 

on the r.h.s. of (7.12). Second, floc, and σ are corrected, using the first tentative solution 
u1(y,θ), together with the given distribution of Z. With these new values of floc and σ, 
however, the first tentative solution u1(y,θ), does not obey eq. 7.12. This requires a repetition 
of the “inner” iteration loop to find a new solution: u2(y,θ). The next (second) tentative 
solution, u2(y,θ) , deviates less from the real solution than the previous tentative solution. 
Τhe procedure is repeated until a prescribed convergence criterion is satisfied, i.e. the 
difference between un and un+1 is smaller than a prescribe value at all grid points.  The 
numerical details are given in Box 7.3. 
  When correcting σ (in the “outer” loop), we must require that the mass lying between 
two isentropic surfaces be the same as in the horizontally homogeneous reference state, 
i.e. as in the horizontally averaged state. On each isentrope we must therefore require that 
(eq. 7.15): 

 

€ 

σ cosφdφ∫ =σ ref cosφdφ∫  .        (7.32) 
 
  Although it is not clear how Kleinschmidt solved the PV-inversion equation11 he was 
nevertheless able to draw the following three general conclusions (figures 7.14 and 7.15).  
1. Within an isolated air mass with abnormal potential vorticity the static stability as 
well as the absolute vorticity deviate from the normal in the same sense as the potential 
vorticity. 
2. In gradient wind equilibrium, an air mass of relatively high potential vorticity establishes 
a cyclone. Below this air mass, the isentropic surfaces are raised; above this air mass 
they are depressed (figure 7.15). Hence the cyclone has a “cold core” below and a “warm 
core” above the PV-anomaly. If the “producing PV-anomaly” is located just above the 
earth’s surface, as is illustrated in figure 7.13, we obtain a cyclone that is warm throughout 
the atmosphere. 

                                                
11 Note that we have not discussed boundary conditions yet. This is the subject of section 7.9. 
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FIGURE 7.15. The isentropes and circulation for idealised negative (a) and positive (b) PV-
anomalies. Gray shaded area delineates the PV-anomaly and thin solid lines are isentropes. Wind 
into the page is indicated by a cross, while wind out of the page is indicated by a dot. Isentropes are 
repelled by a negative PV-anomaly and attracted by a positive PV-anomaly. Source: Martin, J.E., 
2006: Mid-latitude Atmospheric Dynamics. John Wiley and Sons. 324 pp. (page 282).  
 
3. An air mass of relatively low potential vorticity gives rise to an anticyclone. The 
deviations in pressure and temperature have the opposite directional sense to those in 
cyclones. 
  The above statements may be reversed. For instance: a balanced cyclone requires a mass 
of relatively high potential vorticity, or: a cold air mass only remains cold as long as there 
are masses of high potential vorticity above it, or masses of reduced potential vorticity 
below it. When this condition is no longer fulfilled, the air sinks down and loses the 
character of a cold air mass. 
 
 
7.6 PV-inversion: boundary conditions  
 
This section, together with Box 7.3, is rather technical and can be skipped if desired. We 
now return to the problem of finding the zonal average wind velocity from inversion of the 
zonal average PV-anomaly distribution, using eq. 7.12. The zonal average PV-anomaly 
distribution is shown in figure 7.7.  
  Equation 7.12 is solved numerically on a domain that runs from the sub-tropics (10° N) 
to the North Pole, and from an isentrope near the Earth’s surface to an isentrope in the upper 
stratosphere (2250 K). The domain is divided into grid cells with dimensions Δy in the y-
direction and Δθ in the θ-direction. A grid point is identified by its index (i, j), where i 
represents the index in the positive y-direction and j represents the index in the positive θ-
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direction. The lower boundary is defined as the lowest computational level that is above the 
Earth's surface. If we choose the computational levels at regular intervals of Δθ=10 K, 
starting at 240 K, the first level above the Earth's surface at the North Pole in January is 250 
K, while the first level above the Earth's surface at 10°N in January is 300 K (figure 7.16). 
For July this difference is much smaller (only 20 K, i.e. 280 K at the North Pole and 300 K 
at 10°N).  

  
 
FIGURE 7.16. The approximate position of the Earth’s surface (according the CIRA this coincides 
with p=1013 hPa), relative to the numerical grid in the northern hemisphere in January indicated by 
the blue line and open squares. The red line indicates the potential temperature of the lowest 
computational level for January. The black solid squares indicate the grid points that are located at 
the southern side-boundary of the computational grid. Thermal wind balance is applied to the lowest 
computational layer (indicated by double arrows) using the CIRA analysis of the isobaric potential 
temperature gradient (eq. 7.38).  
 
 Because isentropes in the “Underworld”, below about 300 K, intersect the Earth’s 
surface, the Earth’s surface is a “side boundary”. In figure 7.16 the grid points, which are 
part of this side boundary, are indicated by black squares. Points that represent the lower 
boundary of the computational grid, but do not represent the side boundary, are indicated by 
red circles. We employ the circulation theorem to determine [u] at all grid points that are 
part of the side boundary and do not intersect the Earth’s surface. At the equatorward 
boundary the following constraint is imposed. The absolute circulation around this boundary 
on a specified isentrope is, using Stoke’s theorem, 
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Cb = 2πa Ωacosφb + ub[ ]( )cosφb = σ[ ] Z[ ]
A
∫∫ dA ,      (7.33) 
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FIGURE 7.17. Thermal wind Δ[u] in January (blue solid line) and July (red solid line) as a function 
of latitude in the lowest computational layer (figure 7.16), derived from the monthly average zonal 
average temperature and pressure analysis according to the CIRA, using eq. 7.38 with floc=f. Also 
shown is the wind shear (m s-1) across the lowest computational layer according to the CIRA (red 
circles: July; blue squares: January). 
 
where [ub] is the zonal mean zonal velocity at the boundary and A is the area enclosed by the 
boundary. If Cb (or [ub]) is given, condition (7.33) imposes restrictions on the possible 
configurations of [Z]. We can also interpret (7.33) the other way around: if we know the 
distributions of [σ] and [Z], we can use (7.33) to determine [ub] by evaluating 
 

€ 

ub[ ] = −Ωacosφ + 2πacosφb( )−1 σ[ ] Z[ ]
A
∫∫ dA .      (7.34) 

 
  It is customary to identify the lower boundary with the Earth’s surface12, and to use the 
thermal wind (i.e. the gradient perpendicular to the Earth’s surface of [u]) as a lower 
boundary condition, in which case the temperature at the Earth’s surface is needed to 
evaluate the thermal wind at this boundary. Here, however, the lower boundary of the 
computational grid coincides with an isentropic surface (figure 7.16). Therefore, we must 
use the thermal wind equation in θ-coordinates (eq. 7.7). However, at the points where the 
isentropes intersect the Earth’s surface (the black squares in figure 7.16), the meridional 
gradient of the zonal mean Exner function on an isentropic surface (r.h.s. of eq. 7.7) cannot 
be evaluated numerically, using centered differences (Box 7.3). Furthermore, the CIRA-
temperature is given on isobaric surfaces. Therefore, we apply a coordinate transformation 
using the following identities: 

                                                
12 Thorpe, A.J., 1985: Diagnosis of balanced vortex structure using potential vorticity. J.Atmos.Sci., 42, 397-
406. 
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(assuming that θ is a function of y and p and that p is a function of y and θ). On an isentrope 
(constant θ) the identities in (7.35) reduce to 
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so that (omitting the square brackets) 
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With this and with eq. 6 of Box 7.1), we find that 
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 Therefore, the numerical (finite difference) approximation of (7.7), applied to the lowest 
computational layer, indicated by the double arrows in figure 7.18, is  
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.   (7.38) 

 
The outer brackets in eq. 7.38 indicate an average over the lowest computational layer above 
the surface. Except if stated otherwise, it is assumed in (7.38) that floc =f. 
  Figure 7.17 shows a graph of the thermal wind, Δ[u], in the lowest layer with “thickness” 
Δθ=10 K, computed form (7.38), using the CIRA-analysis of the potential temperature on 
the lowest two isobaric surfaces in the CIRA data set (1013 hPa and 788.93 hPa), for 
January and for July. The strongest January average low-level thermal wind in the lower 
troposphere is observed in the subtropics at 35°N. In July the maximum thermal wind is 
shifted somewhat northward. Furthermore, the low level thermal wind is negative in the 
tropics north of the equator in July, indicating that the equator is cooler near the Earth’s 
surface than the subtropics. The actual vertical wind shear, i.e. the difference in zonal wind 
speed in the lowest computational layer is also shown. The thermal wind is in general 
greater than the actual vertical wind shear near the Earth’s surface, which is very “noisy” in 
figure 7.17, due to the relatively large steps in θ of the lower boundary (figure 7.18). 
 The lower boundary condition (on [u]) is imposed, using (7.38), by specifying Δ[u] in the 
lowest layer. The boundary conditions at the North Pole is [u]=0. At the upper boundary, at 
θ=2250 K, [u] is prescribed according to the CIRA. 
 
 



 

 

30 

Box 7.3  PV-inversion: numerical method  
 
Eq. 7.12 is approximated for each grid point [i, j] (figure 7.16) using a finite difference 
approximation. The first term on the left hand side of (7.12) is approximated by (omitting 
square brackets) 
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∂2u
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Δy( )2

u i +1, j[ ] + u i −1, j[ ] − 2u i, j[ ]{ }       (1) 

 
The second term on the left hand side of (7.12) is approximated by 
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             (2) 
 
In the third term on the left hand side of (7.12) the second derivative is approximated as 
follows. 
 

€ 

∂
∂θ

f locρθ
∂u
∂θ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈

1
Δθ( )2 F +uT i, j +

1
2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
− F −uT i, j − 1

2
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
  .    (3) 

 
In (3) uT is the thermal wind within a layer between two isentropic computational levels. For 
example: 
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uT i, j +1/2[ ] = u i, j +1[ ] − u i, j[ ]  
 
Furthermore, 
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so that 
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except when j corresponds to the level just above the “lower boundary”. The thermal wind in 
the lowest layer is determined by (7.38). Therefore, at the grid points just above the lower 
boundary we have, instead of (4), 
 

€ 

∂
∂θ

flocρθ
∂u
∂θ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈

1
Δθ( )2

F+ u i, j +1[ ] − u i, j[ ]( ) − F−Δu{ }.    (5) 

 
 For those interior grid points that are not exactly one grid cell above the lower boundary 
(figure 7.16), the left hand side of (7.12) becomes 
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The right hand side of (7.12) becomes 
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Numerically approximated, eq. 7.12, applied to all grid points, except those that are located 
at one grid distance above the lower boundary, becomes 
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For the grid points that are located at exactly one grid distance above the lower boundary, 
the numerical approximation of (7.12) is 
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u i, j[ ] + au i +1, j[ ] + bu i −1, j[ ] + cF+u i, j +1[ ] + d* = 0,     (11) 
 
where a, b and c are given respectively, by (7), (8) and (9) with d* now given by 
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Eqs. (6) and (11) are solved iteratively, starting with a guess-field, u=0, at all grid points. 
Evaluating the left hand side of (6) or (11) will produce a residual, ΔR, which should be 
equal to zero at all points. Obviously, this is not the case with the first guess, except when d 
or d* (i.e. at least one of the "forcing-terms”) is equal to zero.  
 Comparison of the forcing terms, d and d*, respectively in (10) and (12), suggests that a 
negative thermal wind, Δu, adjacent to the Earth’s surface (i.e. a warm anomaly at the pole) 
has the same dynamical effect as a positive isentropic gradient of the potential vorticity in 
the atmosphere (for example, a positive PV-anomaly over the North Pole).  The thermal 
wind adjacent to the Earth’s surface is in general positive (figure 7.17). Therefore, the 
temperature gradient at lower boundary will induce an anticyclonic circulation around 
the North Pole, which opposes the cyclonic circulation that is induced by the positive PV-
anomalies in the atmosphere. In other words, the circulation induced by the boundary 
temperature anomaly partly compensates the circulation induced by the interior PV-anomaly 
(see sections 7.7 and 7.8 for cautionary notes on this interpretation). 
 By making a new guess, such that 
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unew i, j[ ] = uold i, j[ ] − ΔR  ,        (13) 
 
the new residual is reduced to zero at grid point [i, j]. The same procedure is then followed 
at the neighbouring grid point. This will, however, perturb the solution of the preceding grid 
point. Therefore, the entire grid needs to be scanned many times. Provided the equation is of 
the elliptic type, the residuals become smaller at each successive scan of the entire grid. The 
iteration procedure is stopped when the absolute value of the residual at all grid points is 
smaller than some prefixed value, after which we compute the associated isentropic density 
anomaly with (7.17a). Next, a horizontally uniform correction is applied to σ so that the total 
mass, lying between two isentropic surfaces, is the same as the total mass lying between 
these two isentropic surfaces in the horizontally homogeneous reference state, i.e. 
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σ cosφ∫ dφ =σref cosφ∫ dφ         (14) 
 
on each isentropic computational level.  
 The new distribution σ perturbs eq. (7.62), requiring a new guess for u. The program 
consists of two embedded iteration loops: the inner loop is concerned with finding u for 
fixed σ, while the outer loop is concerned with correcting σ for the value of u that is 
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obtained from the inner loop, imposing the condition of mass conservation. Convergence 
criteria on both u and σ must be set. This method is called “successive relaxation”, because 
the new guess of u is used immediately to evaluate the residual at the neighboring grid point. 
In the mathematical literature this method is known as “Gauss-Seidel iteration”. A slightly 
more sophisticated version of this method is known as “successive over-relaxation” (SOR).  
In this method the residual in (13) is multiplied by a factor that is slightly greater than 1. 
Usually convergence is faster for SOR. However, in the case at hand, SOR does not 
converge as monotonically as is the case with “ordinary” successive relaxation. 

 
 
 
7.7 Attribution of jets to PV-anomalies by piecewise PV-inversion 
 
This section discusses the solution of the PV-inversion eq. 7.12 for the zonal mean PV-
distribution of both January and July (figure 7.7) for the northern hemisphere. The solution 
for January is shown in figure 7.18 (left panel). For comparison, the analysed zonal wind 
(according to the CIRA) is shown in the right panel of figure 7.18. Both the subtropical jet 
at about 30°N and 350 K and the stratospheric polar night jet, at about 65°N and above 450 
K, appear in the inverted wind field with about the right magnitude. The greatest differences 
between the analysed wind field and the inverted wind field (left panel of figure 7.19) are 
found at mid-latitudes in the layer between the two major PV-anomalies (between 350 and 
450 K) as well as near the earth’s surface. Turbulent eddies in the boundary layer and 
mixing of PV by planetary waves in the mid-latitude higher troposphere and lower 
stratosphere, presumably, induce relatively large deviations from thermal wind balance in 
these regions of the atmosphere, thereby explaining these differences. 
  The subtropical jet and the polar night stratospheric jet can be attributed to particular 
features of the PV-field by piecewise PV-inversion. The technique of piecewise PV-
inversion is, however, not useful if we cannot superpose the wind fields of the piecewise 
inverted PV-anomalies and retrieve the original wind field. Because of the non-linearity of 
the PV-inversion eq. (7.12), it is the question whether this “superposition-principle” is 
valid.  
  As a test of the validity and applicability of the technique of piecewise PV-inversion, the 
PV-anomaly field is split into two portions: the first portion consists of all PV-anomalies 
below θ=480 K, together with the lower boundary temperature anomaly (a boundary 
temperature anomaly is sometimes also refered as a potential vorticity anomaly), while the 
second portion consists of the stratospheric PV-anomaly above θ=480 K, including the 
upper boundary condition on the zonal mean zonal wind. The question why the Ex-UTLS 
PV-anomaly is inverted together with the lower boundary temperature anomaly is explained 
later.  
  The PV-inversion equation is solved for both anomaly fields separately. After adding the 
two inverted wind fields we should retrieve the wind field obtained from inversion of the 
full PV-field, shown in the left panel of figure 7.18. The right panel of figure 7.19 shows 
that this is nearly so. We can thus attribute particular features of the wind field in the 
winter hemisphere to features of the PV-anomaly field. 
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FIGURE 7.18. The zonal average, monthly average zonal wind velocity as a function of potential 
temperature and latitude (black contours, labeled in m s-1) in January, derived from PV-inversion 
(left panel) and according to the CIRA (right panel). The normalised PV-anomalies that “induce” this 
wind field are shown in blue (only positive values are contoured). Labels are given in non-
dimensional units. The isopleths corresponding to 0.1 and 1 non-dimensional unit are drawn thick; 
the isopleths corresponding to 0.5, 2 and 3 non-dimensional units are drawn thin. For more details of 
the structure of these anomalies, see figure 7.7. 
 
  The wind field, which is induced by both the Ex-UTLS PV-anomaly and the lower 
boundary temperature anomaly, is shown in the left panel of figure 7.20. The strength of the 
subtropical jet is explained almost fully by the presence of the Ex-UTLS PV-anomaly and 
the lower boundary temperature anomaly. In other words, the upper stratospheric PV 
anomaly (above θ=480 K) has very little effect on the zonal mean subtropical jet.  
  In contrast to this, the Ex-UTLS PV-anomaly does have a significant effect on the 
strength of the stratospheric jet below 1250 K. If we remove both the PV-anomalies below 
θ=480 K (i.e. the Ex-UTLS PV anomaly) and the surface temperature anomaly (i.e. we put 
Δ[u]=0 in eq. 7.38) and solve the PV-inversion equation with the PV-anomalies above 
θ=480 K retained, we get the result that is shown in the right panel of figure 7.20.  
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FIGURE 7.19. Left panel: difference between analysed zonal mean zonal wind and inverted zonal 
mean zonal wind for January (labeled in units of m s-1). Note that the analysed eastward zonal wind 
speed exceeds the balanced zonal wind speed by several m/s in the middle latitudes, while the 
opposite the case over the Pole and close to the subtropical jet stream. Right panel: difference 
between the sum of two piecewise inverted wind fields, shown in figure 7.20, and the wind field 
obtained from inversion of the total PV-field, shown in the left panel of figure 7.18. Labels are in 
units of m s-1. The inverted pressure field is also shown (dotted lines labeled in units of hPa). 
 
  Apparently, the presence and the general features of the polar night stratospheric jet are 
explained by the PV-anomaly above θ=480 K, but not its full strength. As stated before, and 
illustrated in the right panel of figure 7.19, the sum of the two wind fields, which is shown 
in figure 7.20, is nearly identical to the wind field resulting from inversion of all anomalies, 
shown in left panel of figure 7.18.  
  Figure 7.21 (left panel) shows the wind field induced by the PV-anomaly distribution of 
July over the northern hemisphere. The analysed wind (according to the CIRA) is shown on 
the right in the same figure. Again, the agreement between analysed and inverted zonal wind 
speeds is very good. But, can we still attribute the subtropical jet in July only to the Ex-
UTLS PV anomaly together with the lower boundary temperature anomaly? The following 
section addresses this question. 
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FIGURE 7.20. The zonal average, January average zonal wind velocity (black contours labeled in m 
s-1) and pressure (dotted lines, labeled in hPa) as a function of potential temperature and latitude, 
derived from piecewise PV-inversion. The left panel shows the result when the Ex-UTLS PV-
anomaly and the surface temperature anomaly are retained (i.e Z+=0 for θ>480 K). The right panel 

shows the result when only the polar cap upper stratospheric PV-anomaly is retained (i.e Z+=0 for 
θ≤480 K and Δu=0) and the zonal wind according to the CIRA is imposed at the top boundary at 
2250 K. The PV-anomalies that are retained in the inversion are shown in blue and labeled in non-
dimensional units as in figure 7.18 (only positive values are contoured). 
 
 
7.8  Piecewise PV-inversion and the lower boundary condition 
 
Because of the relative proximity of the negative stratospheric PV-anomaly to the Ex-UTLS 
PV anomaly in July, the answer to the question posed at the end of the previous section is: 
“probably not”. But there is a complication here. The removal of a PV-anomaly, in 
particular a PV-anomaly that is associated with a large isentropic density anomaly, implies 
an isentropic redistribution of mass, which leads to a change of pressure at the lower 
boundary. Since the lower boundary is defined at a specific isentropic level, a change of the 
pressure distribution at the lower boundary implies a different thermal wind at this boundary 
(eq. 7.7). In other words, it is physically inconsistent to invert particular portions of the 
PV-field with a lower boundary condition that is only appropriate for the inversion of 
the total PV-field. This section investigates the effect on the lower boundary thermal wind 
of the removal of PV-anomalies that are associated with large isentropic density anomalies. 
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FIGURE 7.21. The zonal average, monthly average zonal wind velocity as a function of potential temperature 
and latitude (black contours, labeled in m s-1) in July derived from PV-inversion (left panel) and according to 
the CIRA (right panel). The normalized PV-anomalies that “induce” this wind field are shown in colours 
(negative values in red; positive values in blue; labeled in non-dimensional units as in figure 7.18). Also 
shown is pressure (dashed lines, labeled in hPa). 
 
  The northern hemisphere polar cap stratospheric PV-anomaly in January is associated 
with σ+≈-0.2 between 20 hPa and 5 hPa, pole-ward of about 70° latitude (figure 7.9, upper 
panel), implying a mass-anomaly which represents only about 0.3 % of the hydrostatic 
pressure at the Earth’s surface. Therefore, removal of this PV-anomaly has a negligible 
effect on the surface pressure and, therefore, also a negligible effect on the thermal wind at 
the lower boundary. The Ex-UTLS PV-anomaly, however, is associated with 
σ+≈-0.5 between 500 hPa and 200 hPa in the extra-tropics, poleward of about 35° latitude 
(figure 7.9, upper panel), implying a negative mass anomaly which represents about 15% of 
the hydrostatic pressure at the Earth’s surface. So, by removing the Ex-UTLS PV-anomaly 
we are effectively moving a significant portion of the mass of the atmosphere from the 
tropics to the extra-tropics. Hence, in this case (January in the northern hemisphere) the 
inhomogeneous lower boundary condition, i.e. the temperature anomaly at the Earth’s 
surface, should be “attributed” partly to the Ex-UTLS PV-anomaly. This is the reason for 
not inverting the Ex-UTLS PV anomaly by itself but only together with the lower boundary 
temperature anomaly. In fact, inversion of the positive Ex-UTLS PV-anomaly by itself 
results in absurdly high balanced cyclonic wind speeds! If only the boundary temperature 
anomaly is inverted (with no PV-anomalies in the atmosphere), an anticyclonic balanced 
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wind field with speeds approaching 100 m s-1 at the Earth’s surface in middle latitudes is 
obtained 13. 
  The mass-anomaly, which is associated with the northern hemisphere stratospheric PV-
anomalies above 370 K in July, is equivalent to a positive hydrostatic pressure-anomaly 
below 370 K of about 25 hPa over the pole and a negative hydrostatic pressure-anomaly 
below 370 K of about 8 hPa over the subtropics. Therefore, removal of the stratospheric PV-
anomaly must lead to a redistribution of mass with a pressure decrease in the extratropics 
and a pressure increase in the subtropics, as is shown in figure 7.22. On an isentropic 
surface near to the Earth’s surface this appears as a cold anomaly over the pole, which 
induces an anticyclonic circulation in the troposphere. The importance of this effect is 
difficult to assess exactly. Yet, a good impression of the amplitude of this effect is obtained 
by multiplying the surface thermal wind, Δu, in eq. 12 of Box 7.3 by the ratio of the thermal 
wind at 300 K (the lowest computational isentropic level that does not intersect the earth’s 
surface) after and before the removal of the stratospheric negative PV-anomaly, and 
repeating the PV-inversion with the stratospheric negative PV-anomaly removed, with the 
corrected value of Δu as a boundary condition. 
 
 

 
 
FIGURE 7.22. The zonal average pressure anomaly at 300 K in July in the northern hemisphere, that 
results after removing the PV-anomaly above 370 K and redistributing the associated mass anomaly, 
i.e. effectively transferring mass from the extra-tropics to the subtropics. The boundary condition 
must be corrected for this effect. 
 

                                                
13 These high values are also found by e.g. Holopainen and Kaurola (1991) (their figure 4b) (Holopainen, E. 
and Kaurola, J., 1991: Decomposing the atmospheric flow using potential vorticity framework. J.Atmos.Sci., 
48, 2614-2625. 



 

 

39 

 
FIGURE 7.23. The zonal average, July average zonal wind velocity as a function of potential 
temperature and latitude (black contours, labeled in m s-1) according to the solution of the PV-
inversion when Z+=0 for θ>370 K (only positive values of Z+, labeled in non-dimensional units as in 
figure 7.18, are shown in blue). Left panel: case where the thermal wind at the lower boundary is not 
corrected; Right panel: case where the thermal wind at the lower boundary is corrected for the 
redistribution of mass. 
 
  
  The results of the piecewise PV-inversion for July are shown in figure 7.23. The left 
panel shows the result of the uncorrected inversion, while the right panel shows the result of 
the corrected inversion. Clearly, the net effect of removing the stratospheric negative PV-
anomaly is to intensify the westerlies in the troposphere and lower stratosphere.  
  The effect of the redistribution of mass, due to the removal of the negative stratospheric 
PV-anomaly, on the lower boundary condition cannot be neglected in this case, as opposed 
to the winter (January) case. We may conclude that the negative stratospheric PV-anomaly 
above 370 K is at least partly responsible for the relatively weak summer westerlies in the 
troposphere and lower stratosphere.  
 
 
7.9  “PV-theta viewpoint” of the zonal mean state 
 
This chapter investigates the “PV-θ viewpoint” of the zonal mean state of the atmosphere. 
PV-anomalies are defined with respect to a reference state that is at rest with respect to the 
rotating earth. A diagnosis is presented of the zonal mean potential vorticity anomalies in 
January and July, derived from the COSPAR International Reference Atmosphere (CIRA), 
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focussing on interesting PV-features, in particular in the upper troposphere and the lower 
stratosphere. 
 Two positive PV-anomalies catch the eye in this analysis. One of these PV-anomalies, 
which is referred to as the “Ex-UTLS PV-anomaly”, is located between the pole and 30° to 
40° latitude at levels between 310 and 360 K. The Ex-UTLS PV-anomaly is positive 
throughout the whole year and it exhibits a very weak seasonal cycle. Piecewise PV-
inversion demonstrates that the balanced dynamical “response” to this positive PV-anomaly 
consists of a subtropical eastward jet. The second PV-anomaly, i.e. the stratospheric PV-
anomaly, exhibits a strong seasonal cycle. In summer the the stratospheric PV-anomaly is 
negative and is located just above the Ex-UTLS PV-anomaly. In winter the stratospheric 
PV-anomaly is positive and, in the northern hemisphere, it is located above 500 K (20 km 
above sea level) and poleward of 50°-latitude. Piecewise PV-inversion reveals that this 
stratospheric PV anomaly induces the stratospheric polar vortex. Part of the wind field in the 
polar winter stratospheric vortex, however, is induced by the Ex-UTLS PV-anomaly.   
 In the northern hemisphere winter the layer between 360 K and 500 K is characterised by 
a positive PV-anomaly at low latitudes together with negative PV anomaly at mid-latitudes, 
indicating that meridional PV-mixing by breaking planetary waves, which is characteristic 
for the “surf-zone” in the stratosphere, is very important in this layer. 
  
  

 
 
FIGURE 7.24. Scatter plot of the monthly mean (January of the years 1979 to 2011) polar cap 
normalized potential vorticity anomaly, Z+, averaged over the layer between 300 K and 370 K, north 
of 65°N, and the monthly mean Northern Annular Mode (NAM) Index, which is defined as the 
difference in the normalized monthly zonal-mean sea level pressure between 35°N and 65°N. The 
red line represents the best linear fit to the 33 points with a correlation coefficient of 0.67. The 
monthly mean potential vorticity is derived from the ERA-Interim reanalysis (http://data-
portal.ecmwf.int/data/d/interim_full_moda/levtype=pt/). 
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 A complication remains when applying piecewise PV-inversion to large-scale PV-
anomalies that are manifest strongly as mass-anomalies. This complication is related to the 
interpretation of the lower boundary condition. The surface hydrostatic pressure gradient is 
determined by mass-anomalies in association with the PV-anomalies. Removing a PV-
anomaly under the condition of mass conservation (i.e. redistributing its mass anomaly) 
implies a change of hydrostatic surface pressure and, therefore, also a change of the thermal 
wind at the surface. Therefore, if a PV-anomaly, which is associated strongly with a mass-
anomaly, such as the Ex-UTLS PV-anomaly, is removed artificially, the surface thermal 
wind must be adjusted accordingly. In the northern hemisphere winter (e.g. in January), the 
only significant isentropic zonal mean mass anomaly is that which is associated with the Ex-
UTLS PV-anomaly. This implies that the Ex-UTLS PV-anomaly is inextricably connected 
to the lower boundary temperature/pressure anomaly distribution. This connection can 
clearly be seen in figure 7.24, which demonstrates that the surface NAM-index in January 
(section 1.27) is positively correlated with the average normalised polar cap potential 
vorticity anomaly in the UTLS. An analysis of the mass- and PV-budget of the layer 
between 300 K and 380 K and processes that determine this mass- and PV-budget, will 
probably provide clues to the answer to the question which processes lead to annular mode 
variability. This variability is very likely determined by meridional mixing of potential 
vorticity in the ex-UTLS and in the lower stratospheric surf zone. This mixing is due to 
vertical propagation of planetary Rossby waves, a topic which will be treated in chapter 11.  

The ex-UTLS, between θ=310 K and  θ=370 K, stands in “adiabatic contact” with the 
tropical troposphere and the upper outflow branch of the Hadley circulation, which is driven 
by release of latent heat in the ITCZ. Therefore, the tropics may also play a large role in 
determining the PV-distribution in the layer between θ=310 K and  θ=370 K, which is 
referred to as the “Middleworld”. Chapter 12 aims to identify more precisely how processes, 
such as radiative transfer, latent heat release in the tropical Hadley circulation and 
“planetary wave drag” act together to maintain the observed PV-distribution.  
 Hopefully this chapter has provided a feel for the character of the relation between the 
potential vorticity field and the temperature- and wind-field. 
 
 
PROBLEM 7.3. The surf zone: zonal mean zonal wind and mass distributions that 
result from meridional mixing of potential vorticity 
The PV-dstribution in the layer between θ=370 K and θ=550 is characterised by a reversed 
isentropic gradient of Z+ (figure 7.7). This is the consequence of meridional “mixing” of 
potential vorticity by eddies under the constraint of material conservation of potential 
vorticity. Potential vorticity mixing, which occurs in a retricted band of latitudes, called “the 
surf zone”, makes the zonal mean potential vorticity uniform within this surf zone and 
creates merional PV-gradients at the edge of the surf zone, as is indicated schematically in 
figure 7.25 (Dritschell and McIntyre (2008); see also Hoskins and James (2014), chapter 
18). It is interesting to note that the reference potential vorticity, Zref (section 7.3), depends 
on latitude. According to the solution of the PV-inversion equation (7.12), assuming 
homogeneous upper and lower boundary conditions, Zref is associated with a zonal mean 
zonal wind, [u]=0. Mixing of Zref in a range of latitudes between the latitudes, φ=φS and 
φ=φN, will create PV-steps at these latitudes. The isentropic tropopause at =350 K, for 
instance, is an approximate PV-step, which is established partly by inhomogeneous lateral 
PV-mixing. If the atmosphere adjusts to balance, this will lead to eastward zonal winds at 
and in the vicinity of the latitudes of the PV-steps.  
 Perform a detailed investigation of the influence of eddy PV-mixing on the zonal mean 
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state of the atmosphere. In which way will the zonal wind change when Zref is mixed, and 
how will this affect the pressure distribution in isentropic coordinates? For this problem you 
will need to use the PV-inversion Python-code.      
 

 
FIGURE 7.25. Schematic illustration of the effect of eddy mixing on the distribution of potential 
vorticity. The initial monotonically increasing distribution is shown by the dashed line, and the step-
like distribution after eddy-mixing by the solid line (Hoskins and James, 2014, figure 18.6). 
 
 
 

ABSTRACT OF CHAPTER 7 
 
Chapter 7 is concerned with the relation between the wind and the distribution of 
potential vorticity in an atmosphere which is in thermal wind balance.   
 It is shown that thermal wind balance implies that all dynamical fields such as wind 
and pressure are determined by the distribution of potential vorticity. This is called the 
"Invertibility Principle" (also introduced in a physically simplified model in chapter 5). 
According to the solution of the elliptic equation associated with this principle (the "PV-
inversion equation"), a potential vorticity anomaly is a centre of forcing which induces a 
remote wind-response in the atmosphere. The aspect ratio (horizontal scale divided by the 
vertical scale) of this wind-response is proportional to the Brunt Väisälä frequency divided 
by the inertial frequency, which is usually in the order of 100.  
 Piecewise PV-inversion is introduced as a technique to attribute particular features of the 
wind field, such as the jets, to particular features of the PV-distribution, such as PV-
anomalies. 
 At first sight the idea of (piecewise) PV-inversion seems conceptually relatively simple. 
But, unfortunately, the task of finding and applying boundary conditions for the solution of 
the PV-inversion equation represents a significant complication, with some possible pitfalls, 
related to the fact that a PV-anomaly is manifest partly as a mass-anomaly. 
 These ideas are worked out explicitly here for the zonally symmetric state of the 
atmosphere. The reference state PV-distribution is associated with the state of rest. Two 
dominant potential vorticity anomalies, which determine the structure and intensity of the 
zonally symmetric circumpolar flow, are identified. The potential vorticity anomaly, which 
induces the eastward winds in the troposphere, including the subtropical jet, is the so-called 
ex-UTLS PV-anomaly. This PV-anomaly, which is centred at 330 K (250 hPa), is broad 
(extending from the pole to the about 30° latitude) and shallow. It can be identified with the 
extra-tropical tropopause. The polar winter stratospheric jet is induced by the polar cap 
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stratospheric potential vorticity anomaly, which is located above 500 K (20 km above sea 
level) and poleward of 60°-latitude. The positive Ex-UTLS PV-anomaly and the polar night 
stratospheric positive PV-anomaly can be viewed as the principal building blocks of the 
zonal average atmospheric circulation in winter.  
 The influence of meridional PV-mixing due to breaking planetary on the zonal average 
PV-distribution is evident between 400 K and 550 K in the northern hemisphere winter. In 
summer the dynamical state of the stratosphere is determined by the ex-UTLS PV-anomaly 
and by a negative PV-anomaly above 400 K. 
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